
PhD Proposal:

Solvability in Intuitionistic and Classical Call-by-Push-Value

General Context

The computational model behind modern functional languages and proof assistants is a formal
system known as the λ-calculus, which provides a concise theoretical setting to conceptually express
most of the properties relating to them. Indeed, every programming language/proof assistant im-
plements a particular deterministic evaluation strategy which specifies, among other things, when
parameters are evaluated during function calls. For example, in call-by-value (CbV), the argument
is evaluated before being passed to the function, while in call-by-name (CbN) the argument is sub-
stituted directly into the function body, so that the argument may never be evaluated (if the argument
is not used in the function body), or may be re-evaluated several times (each time it is used). For
decades, CbN and CbV have been studied independently, developing distinct ad hoc techniques, until
the remarkable observation that they are two different instances of a more general framework specified
by Girard’s Linear Logic (LL) [17]. Their logical duality (“CbN is dual to CbV”) was understood
later [10, 9] and their rewriting semantics were finally unified by the call-by-push-value (CBPV)
paradigm introduced by P. B. Levy [21, 20], which is able to generalize different functional languages,
i.e. different evaluation strategies.

Summary

This PhD proposal concerns the call-by-push-value paradigm, a formalism capable of encoding several
functional evaluation strategies such as CbN and CbV in a single formalism.

The first goal of this thesis is to study the fundamental property of solvability [2] in the original
framework of (intuitionistic) CBPV. This requires the study and comparison of different notions of
solvability available in the literature, which are not always well-related, especially in the case of
evaluation strategies ‘ The second goal of the thesis is to extend CBPV to classical logic, as well
as its correspondent notion of solvability. Indeed, while pure functional programming (and thus its
computational model the λ-calculus) is in deep correspondence with intuitionistic logic by means of
the famous Curry-Howard correspondence, programming languages with continuations (modeled
for example by the λµ-calculus [24]) correspond to classical logic.

Recent work has shown how it is possible to unify the theories of CbN and CbV [19, 14, 4]. It
is then expected in both cases (intuitionistic and classical) that the obtained results of solvability in
CBPV perfectly capture the solvability notions in (intuitionistic and classical) CbN and CbV.

Details of the Proposal

We now explain the key concepts of our proposal behind the summary and the goals mentioned above.

Call-by-Push-Value. The call-by-push-value paradigm, introduced by P. B. Levy [21, 20], distin-
guishes between values and computations under the slogan “a value is, a computation does”. It



subsumes the λ-calculus by adding some primitives allowing to capture both call-by-name (CbN) and
call-by-value (CbV) semantics. Essentially, CBPV introduces unary primitives thunk and force —
the former freezes the execution of a term (i.e. it is not allowed to compute under a thunk) while the
latter fires again a frozen term. Resorting to the paradigm slogan, thunk turns a computation into a
value, while force does the opposite. Thus, CbN and CbV are captured by conveniently labelling a
λ-term using force and thunk to pause/resume the evaluation of a subterm depending on whether
it is an argument (CbN) or a function (CbV). Levy’s thunk and force primitives can be seen under
a linear logic perspective as two new constructors bang and dereliction [13]. Two interesting eval-
uation notions for CBPV can then be defined, depending on whether the reduction may take place
under a bang constructor. These notions are known in the theory of programming languages as weak
and strong reduction. So that the theory behind CBPV is in deep correspondence with fundamental
principles of linear logic and various functional programming languages. Moreover, CBPV provides
a unique formalism capturing distinct evaluation strategies, thus allowing to study operational and
denotational semantics of different evaluation strategies in a unified framework.

Solvability. Solvability captures the fact that terms can operationally interact with the environment
in order to produce a given output. Formally, in the CbN λ-calculus, a closed (i.e. without free
variables) λ-term t is solvable if there are terms u1, . . . , un (n ≥ 0) such that t u1 · · ·un reduces to a
completely defined result (the identity program). Closed solvable terms represent meaningful programs
as they are able to produce any desired result when applied to a suitable sequence of arguments. This
notion can be easily extended to open terms (i.e. with free variables) by performing their closure.

In the literature there are several operational and logical characterizations of solvability for the
CbN λ-calculus, that is:

t is solvable
(operational)⇐⇒ the head reduction of t terminates

(logical)⇐⇒ t admits suitable intersection types

The operational characterization of solvability has been proved in an untyped setting using the so-
called standardization theorem. The logical characterization can be proved by building an appropriate
intersection type assignment system characterizing head normalizable terms.

In the framework of CbV, the definition of solvability is analogous to the one in CbN, but the
notion is trickier [23, 1, 15]. Moreover, it is not possible to provide an operational characterization
of solvability in Plotkin’s original formulation of the CbV λ-calculus [25], because reduction is some-
how too restricted [6]. Operational characterizations of CbV solvability have been recently found in
some extensions of Plotkin’s CbV λ-calculus so that to characterize operationally CbV solvability it
is necessary to go beyond Plotkin’s original syntax [6]. A logical characterization of CbV solvability
has been recently proposed in [22].

Intersection Types. Intersection types are based on a type constructor σ∩τ , which can be assigned
to terms having both the type σ and the type τ . They usually enjoy associativity ((σ ∩ τ) ∩ δ =
σ∩(τ∩δ)), commutativity (σ∩τ = τ∩σ), and idempotency (σ∩σ = σ). Intersection type systems [8]
have been introduced to increase the (limited) typability power of simple type assignment systems,
but quite early they turned out to be a very powerful tool for characterizing semantic properties of
λ-calculus, like solvability and strong normalization, and for describing models of λ-calculus in various
settings. A flavour that became quite convenient in the last decade is that of non-idempotent

2



intersection types, where the intersection σ ∩ σ is not equivalent to σ. They first appeared in [16]
but it is the seminal work of de Carvalho [7, 11], who found fundamental uses of non-idempotency to
characterise quantitative properties of λ-calculus, stressing their importance. Roughly, distinguishing
σ ∩ σ from σ gives rise to resource aware semantics of different λ-calculi, that is why they are also
called quantitative types. A survey can be found in [5]. Non-idempotent intersections have two
main features that we are going to exploit in the framework of this work:

1. Bounds on evaluation lengths: they go beyond simply qualitative characterizations of termina-
tion, as typing derivations provide quantitative bounds on the length of evaluation (i.e. on the
number of β-steps) and on the size of the obtained normal forms. Therefore, they provide a tool
to reason about the intentional insights on programs.

2. Linear logic interpretation: non-idempotent types are deeply linked to linear logic. The relational
model [3, 12] of linear logic (often considered as a sort of canonical model of linear logic) is based
on non-idempotent types, which can be seen as a syntactic presentation of the relational model
of the λ-calculus induced by the interpretation into linear logic.

Computational Classical Logic. The Curry-Howard Isomorphism is a well-known relationship
between programming languages and logical systems: while Curry first introduced the analogy between
Hilbert-style deductions and combinatory logic, Howard highlighted the one between simply typed
lambda calculus and natural deduction. Both analogies use intuitionistic logic. The extension of the
Curry-Howard Isomorphism to classical logic took more than two decades, when Griffin [18] observed
that Felleisen’s C operator can be typed with the double-negation elimination. A major step in this
field was done by Parigot [24], who proposed the λµ-calculus as a simple term notation for classical
natural deduction proofs. The λµ-calculus is an extension of the simply typed λ-calculus that encodes
usual control operators as the Felleisen’s C operator mentioned so far. Other calculi were proposed
since then, e.g. Curien-Herbelin’s λµµ̃-calculus [9] based on classical sequent calculus.

The CBPV calculus introduced by P. B. Levy [21, 20] is intuitionistic, in the sense that it only
models pure functional programming. An extension of the original CBPV to a classical setting is part
of this PhD proposal.

Tentative timeline of the proposed research activities. During the first semester, the student
will familiarize with the different notions involved in the thesis, e.g., solvability and call-by-push-value.
A characterization of solvability in the setting of intuitionistic CBPV is expected by the end of the first
year. During the second part of the thesis Victor Arrial will work on solvability extended to languages
with continuations. The last six months of the three years will be consecrated to the writing of the
thesis.

Technical Tools and Collaborations. A good knowledge of functional programming is required.
Mathematical tools such as rewriting, λ-calculus, linear logic, and type systems will be needed. Many
collaborations in the domain are carried out with S. Ronchi Della Rocca (Universite de Turin, Italie),
A. Bucciarelli (IRIF, Universite Paris-Diderot), G. Guerrieri (Univ. Bath), B. Accattoli (LIX Ecole
Polytechnique), and A. Viso (INRIA, France).

3



References

[1] B. Accattoli and L. Paolini. Call-by-value solvability, revisited. In Functional and Logic Programming
(FLOPS), pages 4–16, May 2012.

[2] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in logic and the
foundation of mathematics. North-Holland, Amsterdam, revised edition, 1984.

[3] A. Bucciarelli and T. Ehrhard. On phase semantics and denotational semantics: the exponentials. Ann.
Pure Appl. Log., 109(3):205–241, 2001.

[4] A. Bucciarelli, D. Kesner, A. Ŕıos, and A. Viso. The bang calculus revisited. In Functional and Logic
Programming (FLOPS), pages 13–32, September 2020.

[5] A. Bucciarelli, D. Kesner, and D. Ventura. Non-idempotent intersection types for the lambda-calculus.
Logic Journal of the IGPL, pages 431–464, 2017.

[6] A. Carraro and G. Guerrieri. A semantical and operational account of call-by-value solvability. In Foun-
dations of Software Science and Computation Structures (FOSSACS), pages 103–118, April 2014.

[7] D. d. Carvalho. Sémantiques de la logique linéaire et temps de calcul. PhD thesis, 2007.

[8] M. Coppo and M. Dezani-Ciancaglini. An extension of the basic functionality theory for the λ-calculus.
Notre Dame Journal Formal Logic, pages 685—-693, 1980.

[9] P. Curien and H. Herbelin. The duality of computation. In Int. Conf. on Functional Programming (ICFP),
pages 233–243, September 2000.

[10] V. Danos, J. Joinet, and H. Schellinx. Lkq and lkt: Sequent calculi for second order logic based upon dual
linear decompositions of classical implication. In Advances in Linear Logic, pages 222–211. 1995.

[11] D. de Carvalho. Execution time of λ-terms via denotational semantics and intersection types. Mathematical
Structures in Computer Science, pages 1169–1203, 2018.

[12] D. de Carvalho, M. Pagani, and L. Tortora de Falco. A semantic measure of the execution time in linear
logic. Theorical Computer Science, Special issue Girard’s Festschrift, pages 1884–1902, 2011.

[13] T. Ehrhard. Call-by-push-value from a linear logic point of view. In Programming Languages and Systems
(ESOP), pages 202–228, April 2016.

[14] C. Faggian and G. Guerrieri. Factorization in call-by-name and call-by-value calculi via linear logic. In
Int. Conf. on Foundations of Software Science and Computation Structures (FOSSACS), pages 205–225,
March-April 2021.

[15] Á. Garćıa-Pérez and P. Nogueira. No solvable lambda-value term left behind. Logical Methods in Computer
Science, pages 125–159, 2016.

[16] P. Gardner. Discovering needed reductions using type theory. In Theoretical Aspects of Computer Software,
International Conference (TACS), pages 555–574, April 1994.

[17] J. Girard. Linear logic. Int. Conf on Theoretical Computer Science (TCS), pages 1–102, 1987.

[18] T. Griffin. A formulae-as-types notion of control. In Principles of Programming Languages (POPL), pages
47–58, January 1990.

[19] G. Guerrieri and G. Manzonetto. The bang calculus and the two girard’s translations. In Joint International
Workshop on Linearity & Trends in Linear Logic and Applications, pages 15–30, July 2018.

[20] P. B. Levy. Call-by-push-value: Decomposing call-by-value and call-by-name. Higher-Order and Symbolic
Computation, pages 377–414, 2006.

4



[21] P. B. Levy. Call-by-push-value: A subsuming paradigm. In Typed Lambda Calculi and Applications
(TLCA), pages 228–242, April 1999.

[22] G. Manzonetto, A. Kerinec, and S. Ronchi Della Rocca. Call-by-value, again! In International Conference
on Formal Structures for Computation and Deduction, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2021. To appear.

[23] L. Paolini and S. R. D. Rocca. Call-by-value solvability. RAIRO Theoretical Informatics and Applications,
pages 507–534, 1999.

[24] M. Parigot. Lambda-mu-calculus: An algorithmic interpretation of classical natural deduction. In Logic
Programming and Automated Reasoning, International Conference (LPAR), pages 190–201, July 1992.

[25] G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Int. Conf. on Theoretical Computer
Science (TCS), pages 125–159, 1975.

Encadrement (in French)

Giulio Manzonetto (Directeur), giulio.manzonetto@lipn.univ-paris13.fr

Laboratoire d’accueil: LIPN - Laboratoire d’Informatique de Paris Nord (UMR 7030 du CNRS).
Université Paris 13, Villetaneuse.

Le Laboratoire d’Informatique de Paris Nord (LIPN - UMR 7030) joue un rôle majeur dans la
recherche en informatique fondamentale en Île-de-France. En particulier, le laboratoire accueille,
dans l’équipe LoVe (Logique et Vérification), un groupe de chercheurs et enseignant-chercheurs ayant
une expertise bien établie et reconnue de longue date en logique linéaire, avec des applications à
plusieurs domaines de l’informatique fondamentale: théorie de la démonstration, lambda-calcul et
programmation fonctionnelle, sémantique dénotationnelle, complexité implicite. Ces domaines font
partie des axes portants de l’équipe LoVe et du LIPN.

À présent, 2 professeurs, 5 mâıtres de conférences, 4 CR CNRS et plusieurs doctorants travaillent
activement sur ces thématiques. En particulier, le doctorant nouvellement recruté pourra bénéficier
de l’expertise acquise par Kerinec sur la characterisation logique et sémantique de la solvabilité.
L’équipe LoVe conduit ou contribue à plusieurs projets de recherche nationaux autour du sujet, et
mène régulièrement des collaborations internationales.

La thése pourra être co-encadrée par Delia Kesner (Irif) qui a déjà supervisionné M. Arrial pendant
son stage de Master 2 (MPRI).

Giulio Manzonetto
Mâıtre de conférences

IUT de Villetaneuse
Laboratoire LIPN

Université Paris-Nord

5

giulio.manzonetto@lipn.univ-paris13.fr

