
The Geometry of Approximations
in Programming Languages

Ph.D. Thesis Proposal

Damiano Mazza
CNRS, LIPN, Université Sorbonne Paris Nord

1 Context

In the last couple of decades, the idea that a programming language may be approximated by
means of a (multi)linear calculus has seen an increasing number of applications. The original,
and perhaps best known example is the so-called Taylor expansion of the untyped λ-calculus
by means of the resource λ-calculus introduced by Ehrhard and Regnier [ER06, ER08]. This
was the starting point of a long series of results, on semantics [dC18b], pure λ-calculus [BM20]
and probabilistic computation [ETP14, TAO17], just to give a brief, far from exhaustive list of
examples.

Another important source of applications is the link of approximations with the theory
of intersection types. First discovered by de Carvalho for the non-idempotent case [dC07],
this was later extended by myself and my Ph.D. students to cover the idempotent case as
well, in great generality [MPV18]. In this way, de Carvalho’s idea to use intersection types for
inferring exact bounds on the running time of programs [dC18a] may be extended to wider
contexts, allowing for analysis of memory usage [ADLV20, ADLV21a, ADLV21b], analyzing
concurrent programs [DLdVMY19], or going as far as proving the Cook-Levin theorem using
type systems [Maz17].

I recently proposed an axiomatic framework for approximations in programming lan-
guages [Maz21], which we are starting to develop with my Ph.D. student Boris Eng. Although
the exact formulation requires a bit of category theory, the basic idea may be explained infor-
mally as follows. An approximation relation t @ M between an approximating program t and
a program M should induce a sort of “adjunction” between computations and approximated
computations: for every program M and approximation u,

M evaluates to N such that u @ N
there exists t @ M such that t evaluates to u iff

or, diagrammatically,

u t // u

A iff A

M // N M

(1)

where arrows represent evaluation of programs. The intuition is simple: if we consider
approximations as pieces of information, and read t @ M as “M contains information t”, an

1



approximation relation ensures that a program M evaluates to something containing a piece
of information u iff an approximation of M evaluates to u itself. Notice the resemblance with
topological continuity here.

2 Idea

Although the axiomatic framework nicely encapsulates all instances of program approxima-
tions known so far, as well as others which had not been hitherto considered, it does not shed
any light on an important, albeit informal question: where do approximations come from?

The starting point of this thesis proposal is the idea that, in the context of programming
languages, approximations have a geometric origin. More precisely, an approximation rela-
tion t @ M should arise from the existence of some kind of “étale map” from t to M. The
notion of étale map is well-known in several geometric contexts (smooth manifolds, schemes,
toposes. . . ) as a suitable reformulation of the notion of local homeomorphism from topology.

The above intuition results from looking at what happens in program approximations :
in all notions of approximations, t @ M precisely when the syntactic constructs of t map
onto similar syntactic constructs of M, respecting the neighboring structure and, moreover,
for each syntactic construct of M, there may be several corresponding constructs in t. This
seems to indicate that t is an “étalé space” over M, in a sense to be made precise.

Notice that, for the above viewpoint to make sense, approximating and approximated pro-
grams must live in the same world, otherwise one would not be able to speak of maps between
them. This may seem surprising at first: for example, in the primordial example of Ehrhard
and Regnier’s Taylor expansion [ER06, ER08], approximations are resource λ-terms and ap-
proximated programs are λ-terms, and these live in two distinct calculi with distinct opera-
tional semantics. However, as shown in my work on the infinitary affine λ-calculus [Maz12],
it is possible to see a usual program M as an infinitary program of the same of sort of the ap-
proximating programs t, so there is no inconsistency in taking them as inhabitants of the same
world; using distinct programming languages is more of a convenience than a mathematical
necessity.

Pushing the above idea further, we are led to wonder: if approximations are étale maps,
maybe evaluations themselves (the horizontal arrows in the diagram (1)) should be seen as
maps. By taking seriously the idea that a map takes a syntactic construct to a construct of the
same form, we see that program evaluation (in λ-calculus-like languages or, more generally,
in rewriting systems) induces a map in the opposite direction of the evaluation itself. This is
exemplified by so-called β-reduction, the fundamental evaluation step of the λ-calculus:

(λx.M)N → M[N/x],

where M[N/x] denotes the term M in which every free occurrence of the variable x is replaced
with a copy of the program N. In this rule, every syntactic construct on the right hand side
may be mapped to a unique syntactic construct of the same kind on the left hand side,
defining a map (again, in a sense to be made precise) ρ : M[N/x] → (λx.M)N (this is
implicitly used in rewriting theory, where an inverse image of a syntactic construct c via ρ is
known as a residue of c).

2



If we redraw diagram (1) according the above ideas, we obtain

u

ét
��

t oo

ét
��

u

iff

M oo N M

(2)

where now arrows represent maps, the vertical ones being étale and the horizontal ones
corresponding to evaluation. This looks like a factorization theorem of some sort.

3 Plan

The main objective of this thesis is to transform the above idea into a precise theory. Here is
a rough plan of how it may be developed:

• formally define the notion of “map” between programs, in the context of the pure
λ-calculus at first, so that approximations correspond to suitable étale maps and evalu-
ations to other particular maps, and such that the desired factorization theorem holds.

• Use the above framework to give a geometric explanation of program approximations.
For example, Ehrhard and Regnier’s Taylor expansion of a λ-term M should appear as
an “étale cover” of M by means of linear approximations.

• Investigate the notion of étale cover more systematically, in particular understanding
whether this yields a site (in the sense of Grothendieck) on the category of programs
and maps, and then study what kind of generalized programs correspond to the sheaves
on that site or, in a more speculative direction, whether cohomological methods arising
from this setting have any meaning in programming languages.

• Extend the approach outside of the pure λ-calculus, for example to typed languages, or
to languages with side effects (non-determinism, probability. . . ). A particularly interest-
ing direction is that of concurrent programming: the work [DLdVMY19] on intersection
types showed that the notion of approximation may be fruitfully brought to this setting,
but it barely scratched the surface of what seems to be possible.

4 Required Skills

Albeit grounded in computer science applications, the present thesis has a relatively high
mathematical content and requires a student with solid background in category theory, ba-
sic topology and, if possible, some acquaintance with sheaves in the general context of
Grothendieck topologies.

References

[ADLV20] Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. The machinery of
interaction. In Proceedings of PPDP, pages 4:1–4:15, 2020.

[ADLV21a] Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. The (in)efficiency of
interaction. Proceedings of the ACM on Programming Languages, 5(POPL), 2021.

3



[ADLV21b] Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. The space of inter-
action (long version). CoRR, abs/2104.13795, 2021.

[BM20] Davide Barbarossa and Giulio Manzonetto. Taylor subsumes scott, berry, kahn
and plotkin. Proc. ACM Program. Lang., 4(POPL):1:1–1:23, 2020.

[dC07] Daniel de Carvalho. Sémantiques de la logique linéaire et temps de calcul. Ph.d.
thesis, Université de la Méditerranée – Aix-Marseille 2, 2007.

[dC18a] Daniel de Carvalho. Execution time of λ-terms via denotational semantics and
intersection types. Math. Struct. Comput. Sci., 28(7):1169–1203, 2018.

[dC18b] Daniel de Carvalho. Taylor expansion in linear logic is invertible. Log. Methods
Comput. Sci., 14(4), 2018.

[DLdVMY19] Ugo Dal Lago, Marc de Visme, Damiano Mazza, and Akira Yoshimizu. Inter-
section types and runtime errors in the pi-calculus. Proc. ACM Program. Lang.,
3(POPL):7:1–7:29, 2019.

[ER06] Thomas Ehrhard and Laurent Regnier. Böhm trees, krivine’s machine and the
taylor expansion of lambda-terms. In Proceedings of CiE, pages 186–197, 2006.

[ER08] Thomas Ehrhard and Laurent Regnier. Uniformity and the taylor expansion of
ordinary lambda-terms. Theor. Comput. Sci., 403(2-3):347–372, 2008.

[ETP14] Thomas Ehrhard, Christine Tasson, and Michele Pagani. Probabilistic coher-
ence spaces are fully abstract for probabilistic PCF. In Proceedings of POPL,
pages 309–320, 2014.

[Maz12] Damiano Mazza. An infinitary affine lambda-calculus isomorphic to the full
lambda-calculus. In Proceedings of LICS, pages 471–480, 2012.

[Maz17] Damiano Mazza. Polyadic Approximations in Logic and Computation. Habilitation
thesis, Université Paris 13, 2017.

[Maz21] Damiano Mazza. An axiomatic notion of approximation for programming
languages and machines. https://lipn.univ-paris13.fr/~mazza/papers/
ApxAxiom.pdf, 2021.

[MPV18] Damiano Mazza, Luc Pellissier, and Pierre Vial. Polyadic approximations, fi-
brations and intersection types. Proceedings of the ACM on Programming Lan-
guages, 2(POPL:6), 2018.

[TAO17] Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong. Generalised species
of rigid resource terms. In Proceedings of LICS, pages 1–12, 2017.

4

https://lipn.univ-paris13.fr/~mazza/papers/ApxAxiom.pdf
https://lipn.univ-paris13.fr/~mazza/papers/ApxAxiom.pdf

	Context
	Idea
	Plan
	Required Skills

