The Geometry of Approximations
in Programming Languages

Ph.D. Thesis Proposal

Damiano Mazza
CNRS, LIPN, Université Sorbonne Paris Nord

1 Context

In the last couple of decades, the idea that a programming language may be approximated by
means of a (multi)linear calculus has seen an increasing number of applications. The original,
and perhaps best known example is the so-called Taylor expansion of the untyped A-calculus
by means of the resource A-calculus introduced by Ehrhard and Regnier [ER06| [ER08]. This
was the starting point of a long series of results, on semantics [dC18b], pure A-calculus [BM20]
and probabilistic computation [ETP14) TAO17], just to give a brief, far from exhaustive list of
examples.

Another important source of applications is the link of approximations with the theory
of intersection types. First discovered by de Carvalho for the non-idempotent case [dCO07],
this was later extended by myself and my Ph.D. students to cover the idempotent case as
well, in great generality [MPV18]. In this way, de Carvalho’s idea to use intersection types for
inferring exact bounds on the running time of programs [dC18a] may be extended to wider
contexts, allowing for analysis of memory usage [ADLV20, [ADLV21a, /ADLV21b], analyzing
concurrent programs [DLAVMY19], or going as far as proving the Cook-Levin theorem using
type systems [Maz17].

I recently proposed an axiomatic framework for approximations in programming lan-
guages [Maz21], which we are starting to develop with my Ph.D. student Boris Eng. Although
the exact formulation requires a bit of category theory, the basic idea may be explained infor-
mally as follows. An approximation relation t — M between an approximating program ¢ and
a program M should induce a sort of “adjunction” between computations and approximated
computations: for every program M and approximation u,

M evaluates to N such that u C N
there exists t — M such that t evaluates to u

iff

or, diagrammatically,

u t——u @)
r iff M
M——N M

where arrows represent evaluation of programs. The intuition is simple: if we consider
approximations as pieces of information, and read t C M as “M contains information t”, an

approximation relation ensures that a program M evaluates to something containing a piece
of information u iff an approximation of M evaluates to u itself. Notice the resemblance with
topological continuity here.

2 Idea

Although the axiomatic framework nicely encapsulates all instances of program approxima-
tions known so far, as well as others which had not been hitherto considered, it does not shed
any light on an important, albeit informal question: where do approximations come from?

The starting point of this thesis proposal is the idea that, in the context of programming
languages, approximations have a geometric origin. More precisely, an approximation rela-
tion t C M should arise from the existence of some kind of “étale map” from t to M. The
notion of étale map is well-known in several geometric contexts (smooth manifolds, schemes,
toposes...) as a suitable reformulation of the notion of local homeomorphism from topology.

The above intuition results from looking at what happens in program approximations :
in all notions of approximations, t — M precisely when the syntactic constructs of ¢ map
onto similar syntactic constructs of M, respecting the neighboring structure and, moreover,
for each syntactic construct of M, there may be several corresponding constructs in . This
seems to indicate that f is an “étalé space” over M, in a sense to be made precise.

Notice that, for the above viewpoint to make sense, approximating and approximated pro-
grams must live in the same world, otherwise one would not be able to speak of maps between
them. This may seem surprising at first: for example, in the primordial example of Ehrhard
and Regnier’s Taylor expansion [ER06, ER08||, approximations are resource A-terms and ap-
proximated programs are A-terms, and these live in two distinct calculi with distinct opera-
tional semantics. However, as shown in my work on the infinitary affine A-calculus [Maz12],
it is possible to see a usual program M as an infinitary program of the same of sort of the ap-
proximating programs f, so there is no inconsistency in taking them as inhabitants of the same
world; using distinct programming languages is more of a convenience than a mathematical
necessity.

Pushing the above idea further, we are led to wonder: if approximations are étale maps,
maybe evaluations themselves (the horizontal arrows in the diagram (1)) should be seen as
maps. By taking seriously the idea that a map takes a syntactic construct to a construct of the
same form, we see that program evaluation (in A-calculus-like languages or, more generally,
in rewriting systems) induces a map in the opposite direction of the evaluation itself. This is
exemplified by so-called B-reduction, the fundamental evaluation step of the A-calculus:

(Ax.M)N — MI[N/x],

where M[N /x| denotes the term M in which every free occurrence of the variable x is replaced
with a copy of the program N. In this rule, every syntactic construct on the right hand side
may be mapped to a unique syntactic construct of the same kind on the left hand side,
defining a map (again, in a sense to be made precise) p : M[N/x] — (Ax.M)N (this is
implicitly used in rewriting theory, where an inverse image of a syntactic construct c via p is
known as a residue of c).

If we redraw diagram (1)) according the above ideas, we obtain

u f<~—u 2)
iét iff étl
M~<~—N M

where now arrows represent maps, the vertical ones being étale and the horizontal ones
corresponding to evaluation. This looks like a factorization theorem of some sort.

3 Plan

The main objective of this thesis is to transform the above idea into a precise theory. Here is
a rough plan of how it may be developed:

¢ formally define the notion of “map” between programs, in the context of the pure
A-calculus at first, so that approximations correspond to suitable étale maps and evalu-
ations to other particular maps, and such that the desired factorization theorem holds.

¢ Use the above framework to give a geometric explanation of program approximations.
For example, Ehrhard and Regnier’s Taylor expansion of a A-term M should appear as
an “étale cover” of M by means of linear approximations.

¢ Investigate the notion of étale cover more systematically, in particular understanding
whether this yields a site (in the sense of Grothendieck) on the category of programs
and maps, and then study what kind of generalized programs correspond to the sheaves
on that site or, in a more speculative direction, whether cohomological methods arising
from this setting have any meaning in programming languages.

¢ Extend the approach outside of the pure A-calculus, for example to typed languages, or
to languages with side effects (non-determinism, probability. ..). A particularly interest-
ing direction is that of concurrent programming: the work [DLdVMY19] on intersection
types showed that the notion of approximation may be fruitfully brought to this setting,
but it barely scratched the surface of what seems to be possible.

4 Required Skills

Albeit grounded in computer science applications, the present thesis has a relatively high
mathematical content and requires a student with solid background in category theory, ba-
sic topology and, if possible, some acquaintance with sheaves in the general context of
Grothendieck topologies.

References

[ADLV20] Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. The machinery of
interaction. In Proceedings of PPDP, pages 4:1-4:15, 2020.

[ADLV2la] Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. The (in)efficiency of
interaction. Proceedings of the ACM on Programming Languages, 5(POPL), 2021.

[ADLV21b]

[BM20]

[dCO07]

[dC18a]

[dC18b]

[DLAVMY19]

[ERO06]

[EROS]

[ETP14]

[Maz12]

[Maz17]

[Maz21]

[MPV18]

[TAO17]

Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. The space of inter-
action (long version). CoRR, abs/2104.13795, 2021.

Davide Barbarossa and Giulio Manzonetto. Taylor subsumes scott, berry, kahn
and plotkin. Proc. ACM Program. Lang., 4(POPL):1:1-1:23, 2020.

Daniel de Carvalho. Sémantiques de la logique linéaire et temps de calcul. Ph.d.
thesis, Université de la Méditerranée — Aix-Marseille 2, 2007.

Daniel de Carvalho. Execution time of A-terms via denotational semantics and
intersection types. Math. Struct. Comput. Sci., 28(7):1169-1203, 2018.

Daniel de Carvalho. Taylor expansion in linear logic is invertible. Log. Methods
Comput. Sci., 14(4), 2018.

Ugo Dal Lago, Marc de Visme, Damiano Mazza, and Akira Yoshimizu. Inter-
section types and runtime errors in the pi-calculus. Proc. ACM Program. Lang.,
3(POPL):7:1-7:29, 2019.

Thomas Ehrhard and Laurent Regnier. Bohm trees, krivine’s machine and the
taylor expansion of lambda-terms. In Proceedings of CiE, pages 186-197, 2006.

Thomas Ehrhard and Laurent Regnier. Uniformity and the taylor expansion of
ordinary lambda-terms. Theor. Comput. Sci., 403(2-3):347-372, 2008.

Thomas Ehrhard, Christine Tasson, and Michele Pagani. Probabilistic coher-
ence spaces are fully abstract for probabilistic PCF. In Proceedings of POPL,
pages 309-320, 2014.

Damiano Mazza. An infinitary affine lambda-calculus isomorphic to the full
lambda-calculus. In Proceedings of LICS, pages 471-480, 2012.

Damiano Mazza. Polyadic Approximations in Logic and Computation. Habilitation
thesis, Université Paris 13, 2017.

Damiano Mazza. An axiomatic notion of approximation for programming
languages and machines. https://lipn.univ-parisi3.fr/ mazza/papers/
ApxAxiom.pdf| 2021.

Damiano Mazza, Luc Pellissier, and Pierre Vial. Polyadic approximations, fi-
brations and intersection types. Proceedings of the ACM on Programming Lan-
guages, 2(POPL:6), 2018.

Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong. Generalised species
of rigid resource terms. In Proceedings of LICS, pages 1-12, 2017.

https://lipn.univ-paris13.fr/~mazza/papers/ApxAxiom.pdf
https://lipn.univ-paris13.fr/~mazza/papers/ApxAxiom.pdf

	Context
	Idea
	Plan
	Required Skills

