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Research proposal

State-of-the-art solvers for hard optimization problems are highly complex software systems, composed by
many sophisticated algorithms that have to work synergistically in order to reach maximum efficiency.
Machine Learning (ML) has been recently widely used in order to improve mixed integer programming
(MIP) solvers [1]. For instance, ML has been successfully applied to improve branch-and-bound methods by
helping to choose the variable to branch on or the node of the branch-and-bound tree to process [2] or to
decide when to search primal bounds (feasible solutions) [3]. ML is also used to guess whether a problem
can be efficiently tackled by a MIP solver [4, 5], allowing dynamic restarts in branch-and-bound methods [5],
or to automatically derive useful Gomory cuts to strengthen the linear relaxation [6].

The vast majority of combinatorial optimization algorithms present a certain degree of modularity, i.e.,
they consists of several blocks/routines that solve simpler problems repetitively. A well developed class of
algorithms capable of exploiting modularity are decomposition methods, among which chiefly Lagrangian
relaxation/Dantzig-Wolfe reformulation/Column Generation and Benders’ decomposition As the name sug-
gests, decomposition algorithms rely on decomposing a problem into distinct subproblems linked by a master
problem. The resolution method alternates between solving the master problem and the subproblems until
the optimum is found. The subproblems are solved a large number of times during the resolution process;
each time, they may differ “little” from the problems solved at the previous iterate.

Up to now, ML is barely used to improve the performance of decomposition based algorithms. The only
related works we are aware of are the followings: learning whether to apply Dantzig-Wolfe decomposition [7],
learning to select columns to add in the master problem in column generation [8], or learning a performance
function which is then used to define an optimization problem whose solution gives an optimal configuration
(with respect to the approximated performance function) [9, 10, 11]. The objective of this PhD is to
enhance decomposition algorithms with the use of machine learning. More specifically, the objective is to
focus on exact methods based on Lagrangian relaxation. Such algorithms are widely used to solve complex
combinatorial optimization problems having a block structure and give satisfactory computational results in
terms of running time and size of instances solved to optimality. For instance, such methods are the best at
solving unit commitment problem, multicommodity network design problems, quadratic knapsack problem,
etc [12, 13, 14, 15, 16, 17].

The objective of this PhD is to understand what are good parameter choices that are specific for La-
grangian based algorithm using machine learning. This project can be decomposed into two main research
questions. The first one focuses on using of machine learning to speed up the computation of the Lagrangian
relaxation whereas the second extends the use of ML when Lagrangian relaxation latter is embedded within
a branch-and-bound framework.

Q1: How ML can help solving Lagrangian relaxations?

Given a mixed-integer programming linear problem, Lagrangian relaxation consists in dualizing constraints
in order to obtain a relaxed problem whose resolution, parametrized by Lagrangian multipliers, gives a lower
bound (in case of minimization) of the optimum. The dual Lagrangian problem reduces to determining the
value of the Lagrangian multipliers giving the highest bound. This dual Lagrangian problem is solved using
iterative methods such as subgradient or bundle methods: starting from an initial value for the Lagrangian
multipliers, the relaxed problem is solved to optimality; from this optimal solution, new values are computed
for the multipliers. This process is repeated until optimal Lagrangian multipliers are found.

The efficiency of the algorithm then strongly relies on the choice of the initial values used for the La-
grangian multipliers and additional parameters such that the policy used to update the step size and the



precision required at each iteration. Different approaches exist for setting these values based on human
knowledge and experience. This PhD aims at providing a framework to learn how to set these values from
the previous resolutions of instances of the same type.

There is an ongoing work in this direction in collaboration with Antonio Frangioni. The objective is
to learn how to initialize the Lagrangian multipliers of a Lagrangian relaxation for the multicommodity
capacitated fixed-charge network design problem (MCND). In this problem, given a graph and a set of
commodities, a subset of arcs must be selected and the commodities must be routed from their origin to
their destination using these arcs. The selection of an arc incurs a fixed cost and provides a predefined
capacity available to all commodities. In addition, a cost stems from routing a unit of commodity on an arc
which depends on the arc and the commodity. The problem is to find a minimum cost solution such that
the demand for each commodity is met and the capacity on each arc is not exceeded.

A classic Lagrangian relaxation for the MCND problem leads to a relaxed problem which decomposes
by arc and which can be solved by computing a continuous knapsack problem associated with each arc. We
propose to learn the initialization using structured Learning. This latter is an umbrella term for supervised
machine learning techniques that involves predicting structured objects, rather than scalar discrete or real
values. In structured learning, the inference phase, which given an unseen instance consists in outputting
the desired result (in our case the dual Lagrangian initial values), is performed by solving an auxiliary
combinatorial problem. In this work, the learnt parameters are used to construct from an unseen MCND
instance a set of minimum cost flow problems (one per commodity) which are solved to optimality. The
Lagrangian multipliers for this new MCND instance are initialized with the potentials derived from the
computed flows.

Initializing Lagrangian values with flow potentials without learning experimentally works [18, 19] but
using learning to set the capacities in the flow problems should greatly improve this initialization as it would
allow to take into account the other commodities when solving the flow problem of a commodity.

The first step of this PhD is to pursue this work by implementing the algorithm. A three months
internship with a second year of engineering-school student will start soon under the supervision of Mathieu
Lacroix and Roberto Wolfler Calvo whose objective is to provide training data points for the supervised
learning. The next step is to continue this approach by learning the other parameters as well as to apply
this approach to other combinatorial optimization problems such as unit commitment problem for instance.

Q2: How ML can enhance Lagrangian based exact methods?

Lagrangian relaxation is usually used within a branch-and-bound procedure to produce a bound at each
node of the branch-and-bound tree (instead of computing the linear relaxation).

In this context, a first step is to use the same procedure developed in Q1 in all the nodes of the branch-
and-bound tree. However, one can exploit the peculiarities of the branch-and-bound algorithm. Indeed, in
a Lagrangian based branch-and-bound algorithm, the Lagrangian Relaxation is computed many times, with
“slight and localised” changes in the data. Hence, it could be useful to adopt an online learning approach.
Online machine learning is a generic method of machine learning in which data becomes available in a
sequential order and is used to update the model for future data at each step. In our situation, given an
instance, the learning could take profit of the data generated by the resolution of the Lagrangian relaxation
in the nodes of the branch-and-bound tree already processed for this instance in order to adjust the learnt
model.

A second crucial parameter when incorporating Lagrangian relaxation into a branch-and-bound algorithm
is which precision which level of precision to have when solving the Lagrangian dual problem at each node of
the tree. The choice relative to the precision can be interpreted as a trade-off between the quality of the dual
bound and the time required to compute it. A good dual bound would allow to improve the probability of
pruning the nodes and keep the size of the branch-and-bound tree under control. Therefore, an interesting
aspect to investigate is to learn what is the right level of precision to be imposed at each node to have a
good probability of pruning the current node.

Finally, a key component of branch-and-bound algorithms are the procedures that derive from the current
node of the branch-and-bound tree solutions of high quality. Even if these solutions are not optimal, they
allow to speed up the overall resolution process by decreasing the size of the branch-and-bound tree thanks
to pruning. Recent works [20, 21] have shown that ML can be used to produce very high quality solutions
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of combinatorial optimization problems by solving a relaxed version of the problem, this version being
constructed using learning. A direction of research could be to use the Lagrangian problem as the relaxed
version. In this case, the challenge is to learn how to construct the Lagrangian problem in such a way that
its solution can be transformed in a feasible solution of the whole problem.

Required skills

The PhD student should have a master degree in combinatorial optimization or operational research. A
background in machine learning and programming skills in C++ will be much appreciated.
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