A Categorical Approach to Descriptive Complexity Theory

Sujet de these

Damiano Mazza
CNRS, LIPN, Université Sorbonne Paris Nord

Background

Decision problems. A decision problem is a computational question which has a yes/no an-
swer. “Computational” means that the question is about some structure which may be fed as
input to a computer program. In particular, such a structure must be finite, albeit arbitrarily
large. Examples of decision problems are: the SUBSTRING problem: given two strings s, t, does
t occur as substring in s? The CLIQUE problem: Given a graph G and an integer n, does G
have n nodes which are all connected with one another?

Answering such yes/no questions has become, perhaps unknowingly at times, part of
every day life. For instance, asking our computer whether the word “serendipitous” is found
in the present text means solving an instance of the first decision problem mentioned above.
Wondering whether there are 100 people on Facebook who are all friends with each other is
an instance of the second example of decision problem.

Computational complexity theory. Born in the mid-1960s with the work of Juris Hartma-
nis and Richard Stearns, complexity theory aims at understanding the difficulty of decision
problems. The basic observation is that the computational resources (running time, memory
space) needed to solve a decision problem usually increase with the size of the instance: for
example, it is reasonable to expect a computer program to take less time to tell whether the
word “serendipitous” occurs in the present text than in the Bible. So, the resources needed
grow as we increase the size of instances; the quicker the resources grow, the more difficult
the problem is deemed to be.

Turing machines are the most commonly used model of computation to speak of compu-
tational resources. Since Turing machines work on strings, the standard complexity-theoretic
definition of decision problem has become simply a subset of {0,1}*. Indeed, a Turing ma-
chine M working on the smallest non-trivial alphabet {0, 1} defines a subset of {0,1}*, namely
the set of strings accepted by M. One may then classify subsets of {0,1}* according to the
computational resources required by the machines accepting them. That is, roughly speaking,
the complexity of a decision problem is the complexity of the “best” Turing machine solving
it.

Classifying decision problems according to their complexity has proved to be a formidably
difficult task. To this day, an extremely large number of basic complexity-theoretic questions
remain open. For example, it is unknown whether there exists a polynomial-time determinis-
tic Turing machine solving the cLIQUE problem introduced above. Contemporary algorithmic
techniques fall way short of achieving such an efficiency (they are exponential at best). At the



same time, proving that no such machine exists seems to be far out of reach of the current
theoretical tools.

Descriptive complexity. Confronted with such an imposing barrier, researchers have natu-
rally turned to explore alternative views of complexity theory, in the hope of shedding some
light on the field. A particularly well-developed approach is given by descriptive complex-
ity [Imm99].

Born with the work of Ronald Fagin, descriptive complexity starts with the observation
that any structure that may be given as input to a computer program is a finite structure in
the sense of model theory. For example, a finite directed graph is just a finite structure on the
tirst-order language Grph with exactly one binary relation symbol. A decision problem thus
becomes a subset of finite structures of some first-order language.

The key idea of descriptive complexity is that a logical sentence ¢ defines such a subset,
namely the set of finite models of ¢, so one may understand the complexity of problems via
the expressiveness of the logic needed to define them (i.e., the logic in which ¢ is formulated).
In other words, we determine the difficulty of a decision problem not by how hard it is to
solve it but by how hard it is to describe it.

Rather than insisting on the multitude of logical characterizations of complexity classes
that were achieved following the descriptive complexity approach, this proposal explores a
slightly different path, which we proceed to illustrate.

The categorical viewpoint. First of all, instead of structures, one may more generally con-
sider finite models of first-order theories, up to isomorphism: for example a binary string is,
up to iso, a finite model of the theory Str whose language contains a binary relation symbol
< and a unary relation symbol isOne, and whose axioms state that < is a total order. “Up
to iso” here means that the structures {0 < 1 < 2} with isOne = {2} and {4 < b < ¢} with
isOne = {c} define the same binary string, namely 001.

We said “first-order theory” but, for reasons which will be clear later, we actually restrict
to what we call Boolean theories, which are multisorted relational theories (i.e., no function
symbols) with equality whose axioms are all of the form VX.p, where ¢ contains no quan-
tifiers except provably unique existential quantifiers, i.e., of the form Jy.ip where the formula
Vy.Vy' . 9(y) ANp(y') = y =y is provable in the theory.

If finite models of Boolean theories are our instances, it is natural to look for a suitable
notion of transformation between such instances. In order to get a compositional definition,
we turn to categorical logic [Joh02]. Initiated by William Lawvere, categorical logic posits
that logical and categorical structures come hand in hand: logical theories of a given kind
(especially subsystems of first-order logic) correspond to categorical structures necessary to
interpret them.

The categorical structure corresponding to Boolean theories is that of a Boolean cate-
gory [CLW93], which are categories with finite products, disjoint and pullback-stable finite
coproducts, and such that the poset of subobjects of every object is a Boolean algebra. Mor-
phisms between Boolean categories, called logical functors, are functors preserving finite prod-
ucts and finite coproducts.

The category BoolTh of Boolean theories and their morphisms and the category BoolCat



of Boolean categories and logical functors are related by an adjunction

Lang
— T
BoolCat T BoolTh

~—
Syn

The functor Lang associates with a category its internal language, whereas the functor Syn
associates with a theory its syntactic category. Intuitively, Syn(T) is the category presented by
the theory T, much like Z[Xj, ..., X,|/(Py,..., Py) is the commutative ring presented by n
generators and m polynomial equations Py, ..., P, € Z[Xy, ..., X,| (the generators correspond
to the sorts and symbols of T, whereas the polynomials to its axioms).

A fundamental observation now is that the category Fin of finite sets and functions is
Boolean, and finite models of a theory T are in bijection with natural isomorphism classes
of logical functors Syn(T) — Fin. Essentially, this was Lawvere’s starting point for his
development of categorical logic.

We therefore define Bool to be the category whose objects are finite Boolean theories
(meaning with finitely many sorts, relation symbols and axioms) and whose morphisms T —
S are logical functors Syn(T) — Syn(S), modulo natural isomorphism.

The category Bool is essentially small, has all finite colimits (with the empty theory E
being initial) as well as finite products (the inconsistent theory being the terminal object).
Moreover, it turns out that Syn(E) is equivalent to Fin, which implies, by what mentioned
above, that a morphism T — E in Bool is the same thing as a finite model of T (remember
that morphisms are up to iso). Hence, a morphism f : T — S of Bool induces a function from
the finite models of S to the finite models of T (notice the contravariance): simply take the
image of f via the presheaf Bool(—,E).

The fact that arrows in Bool go in the opposite direction with respect to how models are
transformed suggests that all arrows should be reversed. Let us then define the category of
data specifications as Data := Bool°P. When seeing a theory T as a data specification, i.e., as an
object of Data rather than Bool, we will write Spec T.

It turns out that a morphism SpecS — SpecT is, essentially, what is known in descriptive
complexity as a quantifier-free query from the finite structures on S to the finite structures
on T. As for the finite models of T, they become morphisms SpeclE — SpecT in Data,
which is reasonable because SpecE is the terminal object of Data, and therefore these are, in
categorical jargon, the “points” of Spec T, which we will call finite points here.

With this perspective, given a morphism f : SpecT — SpecS and a finite point x :
Spec E — SpecS, we may ask when x factors through f via a finite point y : SpecE — SpecT:
this corresponds to seeing f as a sort of generalized problem and y as a “solution” for x. We
may say that x is in the finite image of f if it factors through some y as above.

The category Data is related to computability, as follows. Call a morphism f : SpecT —
SpecS of finite presentation if T is an extension of S, in the sense that T is obtained by adding
sorts and/or relation symbols and/or axioms to 5, and f corresponds to the inclusion of S in
T in Bool. We then have:

Theorem 1 A subset of {0,1}* is recursively enumerable iff it is the finite image of a morphism of
finite presentation over Spec Str.!

INotice the similarity with the MRDP theorem (Matiyasevich, Robinson, Davis and Putnam): when formulated



The result generalizes to any finite data type: for instance, if G is the set of finite directed
graphs, finitely presented theories over Grph define exactly the recursively enumerable sub-
sets of G.

A first link with complexity is given as follows. Call a morphism of finite presentation f :
SpecT — SpecS relational if T has the same sorts as S (in other words, T extends S by possibly
adding relation symbols and axioms, but not sorts). We thus obtain a characterization of NP
(the class of problems solvable in polynomial time by a non-deterministic Turing machine):

Theorem 2 A subset of {0, 1}* is in NP iff it is the finite image of a relational morphism over Spec Str.

As Theorem 1, this too generalizes to arbitrary finite data types. The interesting fact about
Theorem 2 is that it does not use Fagin’s descriptive characterization of NP but, rather, it uses
Theorem 1 and yields Fagin’s theorem as a corollary.

Objectives and Methodology

Objectives. Broadly speaking, the objective of this thesis is to develop as much as possible
the categorical approach to descriptive complexity sketched above. In particular, we will
address the following questions:

1. which subclasses of NP may be characterized by means of subclasses of relational mor-
phisms of Data?

2. Pullbacks in Data, which always exist, are strongly related with quantifier-free reduc-
tions [Imm99]. This brings forward a “reduction as change of base” perspective. Does
this categorical viewpoint have any elucidating consequence in complexity?

3. It is not hard to construct presheaves on Data which have remarkable significance in
terms of complexity. For instance, one may define a presheaf R : Bool — Set sending
each theory S to the set of relational morphisms on SpecS, and acting on morphisms
by change of base. Thanks to the “reduction as change of base” viewpoint, R may be
seen as a “universal” NP-complete problem, in the sense that any NP problem, seen
as a relational morphism, reduces to R in a unique way. In fact, R may be shown
to be related to saT (the satisfiablity problem), whose NP-completeness is a landmark
complexity result known as Cook’s theorem [AB09]. How general is this construction?
If repeated with other classes of morphisms characterizing complexity classes, does it
yield presheaves related to known complete problems for those classes?

4. In light of the above, if subclasses of relational morphisms in Data do not suffice to
characterize certain interesting subclasses of NP, is it possible to find characterizations
using classes of morphisms of presheaves on Data instead? For instance, there is some
evidence that a characterization of NL (non-deterministic logarithmic space) may be
obtained in this way.

5. Arguably, the most important open problem of descriptive complexity is finding a char-
acterization of “order independent” P, that is, the class of languages on unordered

in the language of schemes, this states exactly that a subset of Z is recursively enumerable iff it is the integral
image (defined as the finite image but with SpecZ instead of Spec E) of a morphism of finite presentation over
SpecZ[X].



structures which are decidable in polynomial time by a deterministic Turing machine
operating on an arbitrary ordered version of them (since Turing machines only accept
strings as input, one must introduce a total order: for example, for representing a graph
as a string, one necessarily introduces a total order on the nodes of the graph, corre-
sponding to the “left-to-right” order of the characters of a string). Can the categorical
perspective shed any light on this problem, or at least its difficulty?

These technical questions are complemented by considerations of more philosophical na-
ture, which might nevertheless be interesting to develop. For example, there is a canonical
functor I' : Data — Set, known as the “global section functor”, sending a data specification
SpecS to the set of finite models of S, and sending f : SpecS — SpecT to the computable
function corresponding to f. Being a quantifier-free query, this is in fact an extremely low-
complexity function (for example, well below logspace-computable—an exact description is
too technical to be given here). So the arrows of Data may be seen as low-complexity pro-
grams, typed by data specifications, and the global section functor is the “semantics” of such
types and programs, that is, it associates with each program the set-theoretic function that it
computes. Complexity theory is interested in answering questions in Set, but what we actu-
ally have access to is the programs in Data, and the properties of the global section functor
give an idea, at least conceptually, of the difficulty of complexity-theoretic questions.

For instance, the fact that the global section functor preserves monomorphisms but does
not reflect them means that a decision problem, which is a subset of {0,1}* and therefore
just a monomorphism of the form X ~— {0,1}* of Set, is usually implemented by complex
morphisms of the form Spec X — SpecStr in Data, which are potentially much harder to
reason about than mere subobjects. More generally, this corresponds to the fundamental
distinction in computer science between what is “intensional” (the category Data) and what
is “extensional” (the category Set), and the technical framework suggested here might give
an interesting philosophical viewpoint on this.

The methodology will be to address simpler questions first and move to progressively
more complex material as the work advances. Indeed, the above objectives are listed more or
less in order of difficulty, and they are connected so as to facilitate a smooth development.

Plan. We expect the work to be developed along roughly the following plan:

Year 1: bibliography, introduction to the theory; first steps towards objectives (1) and (2);
philosophical considerations.

Year 2: more work on objective (1) and philosophical considerations; objectives (3) and (4).

Year 3: finalizing all objectives; reflection about objective (5); writing the manuscript.

References
[ABO9] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge
University Press, 2009.

[CLWO93] Aurelio Carboni, Stephen Lack, and R.F.C. Walters. Introduction to extensive and distributive
categories. Journal of Pure and Applied Algebra, 84(2):145-198, 1993.

[Imm99] Neil Immerman. Descriptive Complexity. Springer, 1999.

[Joh02] Peter T. Johnstone. Sketches of en Elephant. A Topos Theory Compendium. Volume 2. Oxford
University Press, 2002.



