
Contrat Doctoral — ED Galilée

Titre du sujet : Algorithms, data, and logic

➢ Unité de recherche : LIPN, UMR7030

➢ Discipline : Informatique

➢ Direction de thèse : Thomas Seiller (CR CNRS, LIPN, 80%), Alberto Naibo (MCF, IHPST, 20%)

➢ Contact : thomas.seiller@cnrs.fr

➢ Domaine de recherche : Computability, Logic

➢ Mots-clés : Algorithms, Data structures, Logic

Description

This projects takes its foundation within the ”Mathematical Informatics” framework introduced by T.
Seiller [16], which is based on a clear and precise distinction between three notions that are frequently
wrongly coalesced, namely that of computation, programs, and algorithms. Computation denotes here the
physical process of computation, whether it is e.g. mechanical, electronic, quantum. A computation takes
place each time a computer program is run. It is bound to a physical theory ; it is also deterministic by
nature. Conceived as a physical process a computation is very similar to the notion of controlled experiment
in physics [2]. This is the starting point of an analysis justifying the use of a mathematical model for studying
computation similar to what is used in mathematical physics : dynamical systems 1 [5, 18].

A program is then bound to a model of computation which abstracts the physical devices on which
computations are performed : abstraction here allows one to (separate) from the worldly constraints such
as finiteness of the computing devices. Models of computations are abstractly as monoid actions [9], which
mathematically formalises how the instructions (generating the monoid) act on the set of configurations
(the space acted upon). A program then describes a family of possible computations based on these specific
instructions, and is naturally formalised as an α-graphing 2, a generalisation of dynamical systems that
allows for e.g. non-determinism, probabilities, while keeping a finite description as a generalised graph.

An example. We here illustrate how monoid actions and graphings formalise the notions of model of
computation and program. We consider Turing machines, and represent it mathematically as the following
monoid action. We consider the space of configurations X = {⋆, 0, 1}|Z| of Z-indexed sequences of symbols
⋆, 0, 1 that are almost always equal to ⋆, i.e. an infinite tape with only a finite number of symbols 0 and 1
written on it. A given point in this configuration space, extended with a chosen control state, describes a
configuration of a Turing machine. Now, instructions allowed in the model are represented as maps from X
to X as follows : for instance moving the working head to the right can be represented as right : X → X,
(ai)i∈Z 7→ (ai+1)i∈Z. The set of instructions then generates a monoid action M ↷ X. A graphing is then a
collection of edges consisting of a source (a subspace of X) and a realiser (an element of the monoid M). The
instruction ”if in control state a and the head is reading a 0 or a 1, move to the right and move to control
state b” is represented as an edge of source the subspace {(ai)i∈Z ∈ X | a0 ̸= ⋆} × {a} and realised by the
map right× (a 7→ b). A Turing machine is then a partial dynamical system f : X ↪→ X in the full group of

1. Physicists describe dynamical systems by partial differential equations (pdes) derived from general theories. Dynamical
systems and pdes are two sides of the same coin, but we do not know a generalisation of pdes comparing in scope with the
generalisation of dynamical systems offered by graphings.

2. The notion first appeared in ergodic theory [1, 3, 4] and introduced in computer science by Seiller [10, 13, 11, 12, 14, 15, 17].

the monoid action 3, i.e. whose graph is contained in the preorder P(α) = {(x, y) | ∃m ∈ M,m · x = y}.
These formalised notions of models of computation and programs then lead to a formal definition of

algorithms. This notion is defined by means of abstract data structures which describe the mathematical basis
on which the algorithm act. A typical example of an abstract data structure is that of unary integers defined
as the set of natural numbers N together with the following structural maps : the successor S : n 7→ n+1 and
tests to zero defined as partial maps iszero : 0 7→ 0 (undefined otherwise) and isnonzero : x 7→ x (undefined
at x = 0). More complex data structures can be considered, such as binary lists (singly chained, or doubly
chained), pairs of a binary integer and a boolean, etc. An algorithm is then defined as a directed graph with
labelled edges, whose labels are mapped to ≪ structural maps ≫ (those maps defined by the abstract data
structure). One can then define programs that implement the algorithm as those that are equal to a glueing
of programs implementing the structural maps along the algorithm A (while the definition is technical, we
illustrate the operation in Figure 1).

The proposed definitions of algorithm is the starting point of the thesis topic, which will exploit those
in several directions.

Objectives.

1. Algorithms : a quest for absolute definitions. There are two main other proposals for defining
algorithms : Gurevich’s abstract state machines [7] and Moschovakis’ theory of recursors [8]. This
new approach should be properly compared to those, both technically and conceptually. Moreover, it
should be understood if the notion defined captures the notion of algorithm from computer science or
that of mathematics ; unless both notions coincide ? In fact two slightly different notions of algorithms
can be defined : the one described above is bound to a specific data domain (e.g. the integers), while
the other one [16] is based on a notion of logical data structure which describes data structures as
models of a first order theory : it is then possible to write down a single algorithm accounting for the
calculation of the gcd on integers, polynomials, or any euclidean ring. The distinction between those
two notions may shed light on this question. These investigations include philosophical matters which
will be explored in collaboration with A. Naibo.

2. Abstract data structures and logic.

(a) Among the models of computation represented in the above framework, one can find functional
models. Those can be characterised as obtained by lifting an initial action α : Mon(I) ↷ X
to an action ᾱ : Mon(I) ↷ Programs(α) on the set of α-programs 4. As part of the proofs-as-
programs correspondence, it is known that some formulas represent data. For instance, the type
∀X, (X ⇒ X) ⇒ ((X ⇒ X) ⇒ (X ⇒ X)) defines binary lists [6]. This leads to the following
questions. Does every logical formula give rise to an abstract data structure ? If not, is it possible
to characterise those that do ? Conversely : can every abstract data structure be obtained from a
logical formula and, if not, is it possible to describe those that can ? This last question should have
connection with descriptive complexity, where specific data structures (related to the formulas /
logic considered) are used in the proofs of characterisations of complexity classes.

(b) The question of approximation is also important when one departs from the usual discrete data
structures. For instance, different models of computation on the reals use sometimes incompatible
representations of real numbers. Roughly, when the Blum-Shub-Smale (BSS) model considers
reals as given from the definition of the model (and can therefore compute with non-computable

3. The name is chosen because it generalises the usual notion of full group for measure-preserving (countable) group actions ;
in this specific case, the preorder P(α) is a Borel equivalence relation.

4. An immediate consequence is that the set of ᾱ-programs is in bijection with the set of α-programs, which implies the
usual conflation of programs with data in functional programming.

i2

t2

d

e

f

a2 b2

t1

c

t4

a1 b1

(a) A program M : bound to a model of computation
α : Mon(I) ↷ X, its edges are elements of Mon(I).

·

·

··

a 1

a
2

a 4

a
4

(b) An algorithm A : it is a labelled graph,
with labels associated to structural maps

·

·

··

a 1

a
2

a 4
a
4

i4

t4

a b

i4

t4

a b

i1

t1

c

i2

t2

d

e

f

(c) The program M can seen as a glueing along an algorithm A
when each label in A can be ≪ replaced ≫ by a program imple-
menting the corresponding structural map

Figure 1 – Example of glueing

reals), computable analysis considers real numbers to be given as the output of a Turing machine.
Algorithm computing on the reals, such as root-finding algorithms, can thus be considered in a
idealised version (in the BSS model) or in a more realistic model based on approximations.
This notion of approximation should be found and will be studied at the level of abstract data
structures.

3. Algorithms, metrics, and approximations.
(a) Having a formal, mathematical, notion of algorithms can be exploited to define a notion of distance

between those. More importantly, the candidate will work on defining a notion of approximate
implementation capturing the fact that a program almost (i.e. up to some small ϵ > 0) implements
a given algorithm. This notion is essential as it can be used to define a notion of convergence and
formally establish that a sequence of programs converges to an implementation of some algorithm.

(b) This theoretical investigation will be coupled with some small experiments to understand if this
notion of convergence can be witnessed in simple exemples of learning. In short : if one trains a

neural network to perform a simple task, such as multiplying integers, is it possible to define/find
an algorithm towards which the sequence of programs considered in the training process ? While
some similar experiments were already performed, they only distinguished algorithms through
their complexity which I believe is based on incorrect assumptions 5.

5. My assumption is that an algorithm is not bound to some complexity : only programs are. In particular, different
implementations of the same algorithm may have different complexities when implemented by different programs (possibly in
different models of computation).

Références

[1] S. Adams. Trees and amenable equivalence relations. Ergodic Theory and Dynamical Systems, 10 :1–14, 1990.

[2] G. Dowek. The physical church thesis as an explanation of the galileo thesis. Natural Computing, 11(2) :247–251,
2012.

[3] D. Gaboriau. Coût des relations d’équivalence et des groupes. Inventiones Mathematicae, 139 :41–98, 2000.

[4] D. Gaboriau. Invariants ℓ2 de relations d’équivalence et de groupes. Publ. Math. Inst. Hautes Études Sci, 95(93-
150) :15–28, 2002.

[5] R. Gandy. Church’s thesis and principles for mechanisms. In J. Barwise, H. J. Keisler, and K. Kunen, editors,
The Kleene Symposium, volume 101 of Studies in Logic and the Foundations of Mathematics, pages 123–148.
Elsevier, 1980.

[6] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and types. CUP, 1989.

[7] Y. Gurevich. What Is an Algorithm ?, pages 31–42. Springer Berlin Heidelberg, 2012.

[8] Y. Moschovakis. What is an algorithm? In Mathematics Unlimited — 2001 and beyond. 2001.

[9] L. Pellissier and T. Seiller. Semantics, entropy and complexity lower bounds. Research Report, 2018.

[10] T. Seiller. Interaction graphs : Full linear logic. In IEEE/ACM Logic in Computer Science (LICS), 2016.

[11] T. Seiller. Interaction graphs : Graphings. Annals of Pure and Applied Logic, 168(2) :278–320, 2017.

[12] T. Seiller. Interaction graphs : Nondeterministic automata. ACM Transaction in Computational Logic, 19(3),
2018.

[13] T. Seiller. Interaction graphs : Exponentials. Logical Methods in Computer Science, 15(3), 2019.

[14] T. Seiller. Probabilistic complexity classes through semantics. CoRR, abs/2002.00009, 2020.

[15] T. Seiller. Zeta functions and the (linear) logic of markov processes. Under revision for publication in Logical
Methods in Computer Science, https://hal.archives-ouvertes.fr/hal-02458330, 2022.

[16] T. Seiller. Mathematical informatics, 2024. Habilitation thesis (https://www.seiller.org/HdR.pdf).

[17] T. Seiller, L. Pellissier, and U. Léchine. Unifying lower bounds for algebraic machines, semantically. Under
revision for publication in Information and Computation, https://hal.archives-ouvertes.fr/hal-01921942,
2022.

[18] W. Sieg. On computability. Philosophy of mathematics, 4 :549–630, 2009.

https://hal.archives-ouvertes.fr/hal-02458330
https://www.seiller.org/HdR.pdf
https://hal.archives-ouvertes.fr/hal-01921942

