
Projection-Based Approximate Benders Decomposition 
for Scalable and Privacy-Preserving Optimization 
Benders decomposition (BD) is a classical technique for solving large-scale mixed-integer 
linear programs. BD is an iterative technique where the master problem makes a 
decision, and one or more subproblems evaluate the consequences of that decision. 
The subproblems provide feedback that helps the master problem improve its approximation 
of the true objective function. This feedback takes the form of cuts that are added to the 
master problem, allowing it to adjust its choices in the next iteration. The process continues 
until the master problem converges to an optimal solution. 

BD has been successfully applied to a range of domains, including facility location, 
stochastic programming, network design, and supply chain optimization. In energy 
markets, for instance, Benders decomposition is used to model long-term investment and 
operational decisions under uncertainty. Similarly, in decentralized logistics, the method can 
be used to model supply chain coordination problems where multiple actors contribute data 
or decisions across different layers of the network. 

Despite its flexibility, BD faces two fundamental limitations: scalability and privacy. As 
the number of subproblems grows, particularly in scenario-based stochastic programming, 
the time spent solving subproblems can dominate the total computational cost. This 
becomes a critical bottleneck when subproblems are high-dimensional or when they need to 
be solved many times in the master iteration process. Equally important, in decentralized or 
multi-agent contexts, each subproblem may correspond to a different stakeholder or 
scenario owner who may not be willing to share internal data such as costs, constraints, or 
operational models. This creates a tension between the centralized nature of cut generation 
in BD and the need to preserve data confidentiality. 

To address these challenges, we propose an approach based on projecting the space of 
the subproblems into a smaller space. The idea is to reduce the dimensionality of the 
variables that link the master and subproblem using a random or learned projection. In the 
case of random projection, we leverage the Johnson-Lindenstrauss Lemma to ensure 
that the geometry of the problem is approximately preserved, thereby allowing the 
subproblem to be solved in a lower-dimensional space. In a second, more adaptive 
approach, we use machine learning, specifically an encoder-decoder architecture, to 
learn instance-specific projections that optimize the trade-off between subproblem fidelity 
and dimensionality reduction. In both cases, the projection obfuscates the original 
variable values, thereby preserving the privacy of the master-side decisions while also 
reducing the size and computational cost of the subproblem. 

Timeline 
The PhD project will be structured across three main phases, progressively building from 
theoretical foundations to practical implementations and real-world applications. 



In the first year, the focus will be on developing a baseline implementation of BD with 
random projections. The main objective will be to understand how projecting the 
master-side decision variables into a lower-dimensional space impacts the feasibility, 
convergence, and overall quality of the decomposition process. This includes both 
theoretical and empirical investigations. A key research direction will be to determine 
whether random projections preserve sufficient geometric structure to ensure 
meaningful cut generation. More precisely, we aim to characterize the contexts in which 
random projections lead to a good estimation of the subproblem cost, and to develop 
methods for quantifying both the underestimation and overestimation errors introduced 
by the projection. It is important to emphasize that, regardless of the direction of the 
approximation error, the solution produced by the master problem remains valid. 
Another core aspect will be to analyze to what extent random projections implicitly 
protect sensitive information by obfuscating the original decision variables. In this regard, 
a formal definition of privacy in the context of Benders decomposition will be 
introduced, along with an associated measure to assess the effectiveness of 
projection-based privacy. By the end of this phase, we expect to deliver a working prototype 
of the projected Benders framework along with a systematic evaluation of its scalability, 
approximation quality, and privacy-preserving properties, ideally resulting in a journal 
submission. 

The second year will shift attention to learning projections adapted to the structure of the 
problem inspired by an encoder-decoder approach. The objective is to replace fixed 
random projections with trainable mappings that can automatically discover 
low-dimensional representations of master problem decisions, while preserving the ability of 
the subproblems to produce valid and informative feedback. We will also investigate hybrid 
approaches—combining learned and random projections— to introduce useful randomness 
that enhances both performance and privacy. More concretely, the encoder network will 
learn a projection from the original decision space to a compressed space, which will be 
used to define the subproblem. The decoder may be used to recover approximate primal or 
dual quantities in the original space. This will involve designing a loss function that penalizes 
cut inaccuracy or subproblem suboptimality, possibly informed by the dual gap or violation of 
the true cost function.  We expect to submit a publication summarizing the methodological 
and empirical advances made in this second year. 

The third year will focus on consolidating the findings from the previous stages and 
formalizing privacy guarantees. A central component of this phase will be a systematic 
comparison of the two projection strategies—random versus learned—in terms of 
solution quality, computational efficiency, generalizability, and privacy preservation. Particular 
attention will be given to developing metrics for measuring information leakage from 
cuts and subproblem responses. Applications in energy markets and decentralized 
logistics will serve as benchmark domains to demonstrate the practical relevance of the 
proposed methods, especially in scenarios where subproblems are managed by 
independent actors with sensitive data. The final year will also involve preparing the thesis 
manuscript. A journal submission synthesizing both the methodological innovations and 
application-driven managerial insights will be targeted, along with the defense of the 
dissertation. 
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