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Scientific context. The use of LLMs has seen rapid expansion due to their ability to generalize
across diverse tasks without requiring fine-tuning and their adaptability in handling complex problems.
These models are now employed to automatically generate explanations for decisions made by machine
learning systems in classification tasks, combining their contextual understanding with methods of post-
hoc rationalization. This need for LLM-generated explanations addresses the demand from non-expert
human users who struggle to comprehend state-of-the-art methods that typically produce explanations
based on feature importance [20], local rules [19], or even rigorous formal explanations [2].

However, in the absence of appropriate control or guidance mechanisms, LLMs exhibit significant
limitations. They can produce unreliable explanations, or even completely hallucinated ones [11], which
considerably diminishes their usefulness for end-users. As demonstrated by [8], current methods for
automatic explanation generation using LLMs do not show clear superiority, and the majority of these
explanations are deemed irrelevant by end-users in empirical evaluations. To address these challenges, we
propose a research topic aimed at developing innovative strategies to guide LLMs in generating both fac-
tual and counterfactual explanations. Our approach targets three essential criteria: the efficiency of the
generation process, the faithfulness of the explanations to the model’s reasoning, and the interpretability
of the produced justifications. This work seeks to address a dual objective: on one hand, to provide
explanations that are naturally understandable by humans [15] by aligning the model’s reasoning with
human cognitive patterns, and on the other hand, to explore neuro-symbolic approaches that combine
the flexibility of LLMs with the transparency of symbolic systems.

State of the art. We briefly recall the main methods in Explainable Artificial Intelligence (XAI). On
the one hand, model-agnostic approaches such as LIME [20], SHAP [13], Anchors [21], or contrastive
explanations [5] aim to explain model decisions without knowledge of their internal structure. Although
widely used, they rely on local perturbations of inputs and present several limitations: the same expla-
nation can justify opposite predictions [10], Shapley values lack formal grounding [12], and the produced
explanations are often not robust [1]. These weaknesses make them poorly suited for critical domains
(medical, financial, legal), where consistency and rigor are essential. Conversely, formal approaches tai-
lored to the model’s structure guarantee rigorous explanations consistent with predictions [2, 10]. Often
based on prime implicants (PI-implicants) [4], these methods, however, struggle to scale for complex
models such as neural networks or ensemble models.

Both model-agnostic and model-specific methods, while capable of providing situationally appropriate
explanations, tend to be more specialized and understandable primarily by expert users. Indeed, they
rely on technical concepts requiring a certain level of expertise, making them inaccessible to non-experts.
This issue is highlighted by Mavrepis et al. [14], who emphasize that XAI primarily targets experts,
limiting its broader adoption. Their work aims to democratize XAI through a customized large language
model (LLM) developed with ChatGPT Builder, generating clear and tailored explanations. To make
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XAI more accessible, recent studies, such as that of Mavrepis et al., propose using customized LLMs (e.g.,
ChatGPT Builder) to produce clear and non-technical explanations. Other works follow this direction,
including [22], which explores LLMs for generating recommendation explanations.

However, recent state-of-the-art methods still lack a robust framework for using LLMs in explanation
generation, as shown by studies from [9], [17], and [6], which underscore major risks of unguided LLM
use in XAI, especially in critical settings. These include: (1) inconsistent explanations, with contra-
dictory justifications for similar inputs, (2) critical hallucinations such as fictitious references , and
(3) statistical mimicry, favoring surface patterns over grounded reasoning [17].

To address these limitations, we propose combining three elements: a semantic validation pipeline,
symbolic anchors inspired by neuro-symbolic approaches [17], and an interactive guidance protocol
aligned with verifiable facts. Unlike the methods discussed in [18], our approach integrates a trace-
ability mechanism combining verification V(ei) and constraints C(ei) for each explanation ei, thereby
meeting systematicity requirements while leveraging LLMs. Our main contributions are: controlled
LLM integration, safeguards against hallucinations, and a quantitative reliability assessment, forming an
optimized guidance framework that overcomes current LLM-based explanation limits.

2 Research directions

This thesis aims to democratize explanation by developing strategies to guide LLMs in generating
explanations. To this end, the following directions will be explored:

Integration of Classifier Internal Information. We aim to enhance LLMs through systematic
integration of target classifier information. The core idea is to avoid considering LLMs as ”blind”
explanation generators, but rather to provide them with maximum usable context about the underlying
classification model. This includes structural information (such as a neural network’s topology, decision
tree rules, or linear model coefficients), model complexity characteristics (VC-dimension or algorithmic
stability), as well as elements regarding the intrinsic difficulty of producing certain types of explanations
[7] (such as the computational cost of model-agnostic or model-specific explanations, explanation fidelity,
or ambiguities in post-hoc methods). The objective is to design an explanatory interface where LLMs
are guided by theoretical and empirical anchors, enabling them to produce more reliable explanations
aligned with the model’s logical structure, and adapted to the difficulty level required by each instance
or explanatory method.

Active Classifier Guidance in Explanations. We aim to strengthen the classifier’s active role in
the explanatory process by introducing a neuro-symbolic guidance mechanism [23] and systematic fil-
tering of LLM-generated explanations. The core idea is to formalize this guidance through a hybrid
framework combining symbolic representations (logical rules, semantic constraints, dependency graphs)
as described in [3] and learned components (embeddings, neural models) to frame the explanatory gener-
ation with verifiable guarantees. These representations will encode expected properties of explanations
- model fidelity, minimality, exhaustiveness, consistency - and translate them into selection or rejection
criteria. Concretely, we will develop filtering modules guided by the classifier’s structure and behavior,
capable of evaluating LLM responses’ relevance through explicit measures (prediction variability, local
robustness, structural simplicity). The objective is to transform the classifier from a passive object to be
explained into an active agent, enforcing neuro-symbolic constraints to ensure the quality and reliability
of generated explanations.

Adaptive Interaction and Explanation Guidance Personalization. We will explore the interac-
tive nature of explanation guidance by introducing an adaptive protocol that enables users to dynamically
influence the explanation process. The goal is to generate personalized, contextualized, and understand-
able explanations that reflect user profiles (expertise, goals, constraints) and decision contexts. We
propose an iterative architecture where users can adjust generation preferences [16] (e.g., detail level,
argument types, language) while preserving core fidelity and consistency guarantees. We also study
how human feedback impacts explanation robustness, especially under distribution shifts or uncertainty.
An evaluation protocol will assess explanations along several axes: fidelity, alignment with classifier
predictions, robustness to perturbations, and perceived utility by both expert and non-expert users.
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